
【python因果库实战20】causallib 评估图表概述3
在这个演示中,我们将 AdversarialBalancing 模型的图表与 IPW 模型的图表进行比较。进一步分析表明,在训练和验证阶段,IPW 模型的不平衡特征数量几乎总是少于 AdversarialBalancing 模型,尽管这两种模型在验证阶段的表现非常接近。尝试不同的学习器可能会产生不同的结果。不幸的是,我们无法获取真实的潜在结果,所以我们最好的模仿方法就是使用反事实预测。如果两者不重叠,可能意味着我们的模型在处理组之间的一致性存在问题,因此我们需要更加谨慎地解读因果结果。